From Flip-Flop to Flip-Flop

From Flip-Flop to Flip-Flop

You can convert one type of flip-flop to another by modifying its input logic.

This often involves creating a conversion table and using logic simplification techniques like K-maps to determine the required input connections.

Example: T to D Flip-Flop

T Q \to Q^+ D
0 0 \to 0 0
0 0 \to 1 1
1 1 \to 0 1
1 1 \to 1 0

Observation:

Example: D to T Flip-Flop

D Q \to Q^+ T
0 0 \to 0 0
0 1 \to 0 1
1 0 \to 1 1
1 1 \to 1 0

Observation:

Example: D to JK Flip-Flop

J K Q \to Q^+ D
0 0 0 \to 0 0
0 0 1 \to 1 1
0 1 0 \to 0 0
0 1 1 \to 0 0
1 0 0 \to 1 1
1 0 1 \to 1 1
1 1 0 \to 1 1
1 1 1 \to 0 0

Observed Minterms:

Now, let’s create a k-map to find a simple answer.

j’k’ j’k jk jk’
q’ 1 1
q 1 1

Example: T to JK Flip-Flop

J K Q \to Q^+ T
0 0 0 \to 0 0
0 0 1 \to 1 0
0 1 0 \to 0 0
0 1 1 \to 0 1
1 0 0 \to 1 1
1 0 1 \to 1 0
1 1 0 \to 1 1
1 1 1 \to 0 1

Minterms:

j’k’ j’k jk jk’
q’ 1 1
q 1 1

The maxterms from this k-map are:

Example: D to JK Flip-Flop

D Q \to Q^+ J K
0 0 \to 0 0 X
0 1 \to 0 X 1
1 0 \to 1 1 X
1 1 \to 1 X 0

Why? Recall this k-map:

Q \to Q^+ J K
0 \to 0 0 0
0 1
0 X
0 \to 1 1 0
1 1
1 X
1 \to 0 0 1
1 1
X 1
1 \to 1 0 0
1 0
X 0

Observations:

Example: JK to T Flip-Flop

T Q \to Q^+ J K
0 0 \to 0 0 X
0 1 \to 1 X 0
1 0 \to 1 1 X
1 1 \to 0 X 1