Remember: Mathematically, number systems can represent any value, it is the hardware that has limits.
More on Positional Notation:
- Positional notation is important for converting ASCII input into a numeric value, among other things.
Example: Converting “123” into a decimal number, digit-by-digit ((1 \times 10) + 2) \times 10 + 3
Example: Positional notation with decimal points 1234.567 = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1} + 6 \times 10^{-2} + 7 \times 10^{-3}
More on Bytes:
- Anatomy: b_7 , b_6 , b_5 , b_4 , b_3 , b_2 , b_1 , b_0
- MSBit: Most significant byte.
- b_7
- LSBit: Least significant byte.
- b_0
Range: \text{Range: } 2^n - 1
- e.g., Range of values a byte can store is 0—255 (2^8 - 1 = 255)
0x
Repeated Division by 2:
Power Table:
Binary | Decimal |
---|---|
2^0 | 1 |
2^1 | 2 |
2^2 | 4 |
2^3 | 8 |
2^4 | 16 |
2^5 | 32 |
2^6 | 64 |
2^7 | 128 |
2^8 | 256 |
Example:
- 10 101 010_2 \to 252_8
Binary | Octal |
---|---|
000 | 0 |
001 | 1 |
010 | 2 |
011 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
Example:
Decimal | Binary | Octal | Hexadecimal |
---|---|---|---|
33 | |||
1110101 | |||
703 | |||
1AF |