Home > CS1300: Discrete Structures > InductionToggle Navbar
Induction Theory Suppose we have an infinite line of dominoes in a row, if we know that
If we knock down one domino We will knock down the next domino Then it follows that eventually every domino will be knocked down.
The principal of mathematical induction is useful for proving that a certain statement is true for all positive integers.
Induction Proof If we have a propositional function P(n) , and we want to prove P(n) is true for any positive integer n , we do the following:
Basis Step : Show that P(1) is trueInduction Step : Show that if P(k) , then P(k+1) for any positive integerConclusion : Then, P(n) must be true for any positive integerExample : Use mathematical induction to prove the
following statement for every positive integer n :2 + 4 + 6 + ... + 2n = n (n+1)
Basis Step: P(1): 1(1+1) = 2 (base case is true) Induction Step: If P(k) is \textcolor{red}{2 + 4 + 6 + ... + 2k} = \textcolor{red}{k(k+1)} , Then P(k+1) is \textcolor{red}{2 + 4 + 6 + ... + 2k} + 2(k+1) \stackrel{?}{=} \textcolor{purple}{(k+1)(k+2)} Proving that P(k+1) is true:
\begin{aligned}
\textcolor{red}{2 + 4 + 6 + ... + 2k} + 2(k+1) &= \textcolor{purple}{(k+1)(k+2)} \\
\textcolor{red}{k(k+1)} + 2(k+1) &= \textcolor{purple}{(k+1)(k+2)} \\
\textcolor{red}{k^2 + k} + 2k + 2 &= \textcolor{purple}{(k+1)(k+2)} \\
k^2 + 3k + 2 &= \textcolor{purple}{(k+1)(k+2)} \\
(k+1)(k+2) &= \textcolor{purple}{(k+1)(k+2)} \\
\end{aligned} Conclusion: Thus, by mathematical induction, the statement is true for every positive integer n . Examples: Induction Proof Example : Use mathematical induction to prove the
following statement for every positive integer n :5 + 10 + 15 + ... + 5n = \frac{5n(n+1)}{2}
Basis Step: P(1): \frac{5(1)(1+1)}{2} = \frac{5(2)}{2} = 5 Induction Step: P(k): 5 + 10 + 15 + ... + 5k = \frac{5k(k+1)}{2} P(k+1): 5 + 10 + 15 + ... + 5k + 5(k+1) = \frac{5(k+1)(k+2)}{2} Proving that P(k+1) is true:
\begin{aligned}
5 + 10 + 15 + ... + 5k + 5(k+1) &= \frac{5(k+1)(k+2)}{2} \\
\frac{5k(k+1)}{2} + 5(k+1) &= \frac{5(k+1)(k+2)}{2} \\
\frac{5k(k+1)}{2} + \frac{10(k+1)}{2} &= \frac{5(k+1)(k+2)}{2} \\
\frac{5k(k+1) + 10(k+1)}{2} &= \frac{5(k+1)(k+2)}{2} \\
\frac{(k+1)(5k + 10)}{2} &= \frac{5(k+1)(k+2)}{2} \\
\frac{5(k+1)(k + 2)}{2} &= \frac{5(k+1)(k+2)}{2} \\
\end{aligned} Conclusion: Thus, by mathematical induction, the statement is true for every positive integer n . Example : Use mathematical induction to prove the
following statement for every positive integer n :1^3 + 2^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}
Basis Step: P(1): \frac{1^2 (1+1)^2}{4} Induction Step: P(k): 1^3 + 2^3 + ... + k^3 = \frac{k^2 (k+1)^2}{4} P(k+1): 1^3 + 2^3 + ... + k^3 + (k+1)^3 = \frac{(k+1)^2 (k+2)^2}{4} Proving that P(k+1) is true:
\begin{aligned}
1^3 + 2^3 + ... + k^3 + (k+1)^3 &= \frac{(k+1)^2 (k+2)^2}{4} \\
\frac{k^2 (k+1)^2}{4} + (k+1)^3 &= \frac{(k+1)^2 (k+2)^2}{4} \\
\frac{k^2 (k+1)^2}{4} + \frac{4(k+1)^3}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\
\frac{k^2 (k+1)^2 + 4(k+1)^3}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\
\frac{(k+1)^2 [ k^2 + 4(k+1) ]}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\
\frac{(k+1)^2 ( k^2 + 4k + 4 )}{4} &= \frac{(k+1)^2 (k+2)^2}{4} \\
\frac{(k+1)^2 (k+2)^2}{4} &= \frac{(k+1)^2 (k+2)^2}{4}
\end{aligned} Conclusion: Thus, by mathematical induction, the statement is true for every positive integer n . Example : Show than n < 2n for
all positive integers n Basis Step: The proposition function is P(n)=n<2^n
\begin{aligned}
P(n)&:n<2^n \\
P(1)&:1<2^1 \\
P(1)&:1<2 \text{ (true, basis step verified)} \\
\end{aligned} Induction Step: Assume P(k): k < 2^k to prove P(k+1): k+1 < 2^{k+1} : \begin{aligned}
k + 1 < 2^k + 1 \le 2^k + 2k = 2^{k+1}
\end{aligned}
Therefore, P(k+1) is true. If k < 2^k , then k+1 < 2^{k+1} Then P(n) must be true for any positive integer n . Example : Prove that 1 + 2 + 22 + ... + 2n = 2n + 1 − 1
for any n ≥ 1When n=1 : LHS is 1+2=3 RHS is 2^2 -1 = 3 Assume k is true. P(k): 1 + 2 + 2^k + ... + 2^k = 2^{k+1} - 1
Goal: Show P(k+1) is true \begin{align*}
\text{ LHS: }& 1 + 2 + 2^n + ... + 2^k + 2^{k+1} \\
\text{ RHS: }& 2^{k+1+1} - 1
\end{align*}
Making LHS match RHS:
\begin{align*}
LHS &= 1 + 2 + 2^n + ... + 2^k + 2^{k+1} \\
&= 2^{k+1} - 1 + 2^{k+1} \\
&= 2^1 * 2^{k+1} -1 \\
&= 2^{k+2} - 1 \\
&= 2^{k+1+1} - 1 \\
&= RHS
\end{align*} Therefore, the statement is true. Second Principle When assuming P(k) isn’t enough to prove P(k+1) , use an extended version of basic induction proof: The second principle.
Second Principle :
P(1) \text{ is true} \\
P(1) \land P(2) \land ... \to P(k+1) \text{ is true} Example : Prove that the amount of postage greater
than or equal to 8 cents can be built using only 3-cent and 5-cent
stamps.Using the second principle of induction, we have to prove that P(n) is true for n \ge 8 where P(n) is that n cents worth of postage can be built using only 3-cent and 5-cent stamps.
Assuming k can be built with 3’s and 5’s, we want to prove k+1
Base Cases:
p(8) = 3 + 5 \\
p(9) = 3 + 3 + 3 \\
p(10) = 5 + 5
To get 11, 12, 13, we can just add 3 to 8, 9, and 10-case, respectively.
By proving p(9) and p(10) , we’ve proven P(k+1) Therefore, for any n \ge 8 , n cents worth of postage can be built using only 3-cent and 5-cent stamps.